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Abstract. This paper presents a set of complete solutions to a class of polynomial optimi-
zation problems. By using the so-called sequential canonical dual transformation developed
in the author’s recent book [Gao, D.Y. (2000), Duality Principles in Nonconvex Systems:
Theory, Method and Applications, Kluwer Academic Publishers, Dordrecht/Boston/London,
xviii + 454 pp], the nonconvex polynomials in Rn can be converted into an one-dimensional
canonical dual optimization problem, which can be solved completely. Therefore, a set of
complete solutions to the original problem is obtained. Both global minimizer and local
extrema of certain special polynomials can be indentified by Gao-Strang’s gap function and
triality theory. For general nonconvex polynomial minimization problems, a sufficient condi-
tion is proposed to identify global minimizer. Applications are illustrated by several exam-
ples.

Key words: critical point theory, duality, global optimization, nonlinear programming,
NP-hard problem, polynomial minimization.

1. Problem and Motivation

We consider polynomial minimization problems of the type (in short, the
primal problem (P)):

min{P(x)=W (x)−xT f : x ∈Rn}, (1)

where x= (x1, x2, . . . , xn)
T ∈Rn is a real vector, f ∈Rn is a given vector, and

W(x) is a polynomial of degree d. It is known that the polynomial mini-
mization problem is NP-hard even when d = 4 (see [14]). Due to noncon-
vexity of the cost function P(x), the problem (1) may possess many local
minimizers and it represents a global optimization problem. It is known
that the application of traditional local optimization procedures for solv-
ing nonconvex problems can not guarantee the identification of the global
minima (see [13]). Therefore, many numerical methods and algorithms have
been suggested recently for finding the lower bounds of polynomial optimi-
zation problems (see [1,15,16]).
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The primary goal of this paper is to present a potentially useful canon-
ical dual transformation method for solving a special polynomial minimi-
zation problem (P) where W is a so-called canonical polynomial of degree
d =2p+1 (see [5]), defined by

W(x)= 1
2αp

( 1
2αp−1

(
. . .
( 1

2α1
( 1

2 |x|2 −λ1
)2

. . .
)2 −λp−1

)2 −λp

)2
, (2)

There αi, λi are given parameters. The nonconvex function W appears in
many applications. In the simplest case where p =1,

W(x)= 1
2α1

( 1
2 |x|2 −λ1

)2

is the so-called double-well potential of the scalar-valued function u = |x|,
which was first studied by van der Waals in fluids mechanics in 1895. Par-
ticularly, if n=2, p =1, then

W(x1, x2)= 1
2α1

( 1
2x2

1 + 1
2x2

2 −λ1
)2

is the so-called “Mexican hat” function in cosmology and theoretical phys-
ics. In solid mechanics where the scalar function u(x) is a field func-
tion, then W(x)= 1

2α1(
1
2u(x)2 −λ1)

2 is the well-known second-order Landau
potential in phase transitions of superconductivity and shape memory
alloys. In post-buckling analysis of extended beam theory developed by the
author [7], each potential well of W represents a possible buckled beam
state. Numerical discretizations of these mechanics problems usually lead
to a large-scale polynomial optimization problems of type (P). The criti-
cality condition ∇P(x)=0 gives a coupled, nonlinear algebraic system with
n unknown x ∈Rn:

p∏

k=1

αk(ξk(x)−λk)x = f, (3)

where

ξ0(x)=|x|, ξk(x)= 1
2αk−1(ξk−1(x)−λk−1)

2, k =1, . . . , p, (4)

and α0 =1, λ0 =0. Clearly, direct methods for solving this coupled, nonlin-
ear algebraic system are very difficult. Also Equation (3) is the only a nec-
essary condition for local minima. In this paper, we will present a complete
set of solutions to Equation (3) with sufficient conditions for global and
local minima by using the sequential canonical dual transformation. This
method has been successfully applied for solving a large class of nonconvex
variational analysis and global optimization problems (see [3,6,10,11]).
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2. Complete Solutions

By the use of the sequential canonical dual transformation developed in
[5], the perfect dual problem (with zero duality gap) ((Pd) in short) of the
polynomial optimization (P) can be formulated as the following

(Pd) : max
ς

{

P d(ς)=− |f |2
2ςp!

−
p∑

k=1

ςp!
ςk!

W ∗
k (ςk)

}

, (5)

where ςp!=ςpςp−1 · · ·ς2ς1, and

ς1 =ς, ςk =αk

(
1

2αk−1
ς2

k−1 −λk

)
, k =2, . . . , p. (6)

W ∗
k (ςk) is a quadratic function of ςk defined by

W ∗
k (ςk)= 1

2αk

ς2
k +λkςk.

The dual problem is a nonlinear programming with only one variable ς ∈R,
which is much easier than the primal problem. Clearly, for any ς �= 0 and
ς2

k �= 2αkλk+1, the dual function P d is well defined and the criticality con-
dition δP d(ς)=0 leads to a dual algebraic equation

2(ςp!)2(α−1
1 ς +λ1)=|f |2. (7)

THEOREM 1 (Complete Solution Set). For any given parameters αk, λk

(k = 1, . . . , p) and the input f , the dual algebraic Equation (7) has at most
s = 2p+1 − 1 real solutions: ς̄ (i) (i = 1, . . . , s). For each dual solution ς̄ ∈ R,
the vector x̄ defined by

x̄(ς̄)= (ς̄p!)−1f (8)

is a critical point of the primal problem (P) and

P(x̄)=P d(ς̄).

Conversely, every critical point x̄ of the polynomial P(x) can be written in
form (8) for some dual solution ς̄ ∈ R.
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Proof. We first prove the vector defined by (8) solves (3). Substituting
(ς̄p!)−1f = x̄ into the dual algebraic Equation (7), we obtain

α1
( 1

2 |x̄|2 −λ1
)=α1(ξ̄1 −λ1)= ς̄ . (9)

Thus from (6) we have

ς̄k =αk(ξ̄k −λk), k =1, . . . , p. (10)

Substituting

x̄(ς̄)= (ς̄p!)−1f =
(

p∏

k=1

αk(ξ̄k −λk)

)−1

f

into the left hand side of the canonical Equation (3) leads to f . Thus for
every solution ς̄ of the dual algebraic Equation (7), x̄= (ς̄p!)−1f solves the
canonical Equation (3), and is a critical point of P .

Conversely, if x̄ is a solution of the couple nonlinear system (3), then it
can be written in the form x̄ = (ς̄p!)−1f with ς̄k = αk(ξ̄k − λk), k = 1, . . . , p

and ξ̄1 = 1
2 |x̄|2. Thus in terms of ς̄k, we have

ξ̄1 = 1
2
|x̄|2 = 1

2
(ς̄p!)−2|f |2 = 1

α1
ς̄1 +λ1.

This is the dual algebraic Equation (7), in which ς̄k =αk(ξ̄k −λk). Since

ξ̄k+1 = 1
2
αk(ξ̄k −λk)

2 = 1
2αk

ς̄2
k = 1

αk+1
ς̄k+1 +λk+1,

we have

ς̄k+1 =αk+1

(
1

2αk

ς̄2
k −λk+1

)
.

This shows that every solution of the coupled nonlinear system (3) can be
written in the form x̄ = (ς̄p!)−1f for some solution ς̄ of the dual algebraic
Equation (7).

3. Global and Local Optimality Criteria

This section will provide some sufficient conditions for global and local
extrema.
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3.1. triality theory for case p =1

The primal problem (P) for p = 1 is to find all critical points of the non-
convex function

P(x)= 1
2α1

( 1
2 |x|2 −λ1

)2 −xT f .

The canonical dual function for this simple case is

P d(ς)=−|f |2
2ς

− 1
2
α−1

1 ς2 −ςλ1.

The dual algebraic equation

2ς2(α−1
1 ς +λ1)=|f |2 (11)

has at most three real roots ς̄ (i) (i = 1,2,3), and the vector x̄i = f/ς̄ (i) is a

critical point of the nonconvex function P(x). Let φ1(ς)=±ς

√
2(α−1

1 ς +λ1).
In algebraic geometry, the graph of φ1(ς) is the so-called singular algebraic
curve in (ς, |f |)-space (see Figure 2).

The following theorem reveals the extremality of these critical points.

THEOREM 2 (Triality theorem [5]). Let λ1, α1 > 0 be two given parame-

ters. If |f |<h=
√

8α2
1λ

3
1/27, the dual algebraic Equation (11) has three real

roots satisfying ς̄ (1) > 0 > ς̄(2) � ς̄ (3), and the vector x̄1 = f/ς̄ (1) is a global
minimizer, x̄2 = f/ς̄ (2) is a local minimizer, while x̄3 = f/ς̄ (3) is a local maxi-
mizer. If |f |<h, the dual algebraic Equation (11) has a unique root ς̄ (1) >0,
and the vector x̄1 is a global minimizer of the function P(x). However, if
|f | = h, the dual algebraic Equation (11) has only two roots ς̄ (1) > 0 > ς̄(2),
the vector x̄1 = f/ς̄ (1) is a global minimizer of the function P(x), while the
vector x̄2 = f/ς̄ (2) is a local stationary point.

REMARK. For p=1, the nonconvex function W(x) is a double-well func-
tion of |x|. By using the method introduced by Gao and Strang [12], we let
ξ1 = �1(x) = 1

2 |x|2, then W(x) can be written as W(x) = W1(�1(x)), where
W1(ξ1)= 1

2α1(ξ1 −λ1)
2 is the canonical function of ξ1 (see [5]). Its conjugate

function can be easily obtained by the Legendre transformation

W ∗
1 (ς)={ξ1ς −W1(ξ1)| ς = ∂W1(ξ1)/∂ξ1 =α1(ξ1 −λ1)}= 1

2α−1
1 ς2 +λ1ς.

Thus, replacing W(x) by W1(�1(x))=�1(x)ς −W ∗
1 (ς), the nonconvex func-

tion P(x) can be written in the following so-called extended Lagrange
form:
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L(x, ς)= 1
2 |x|2ς − 1

2α−1
1 ς2 −ςλ1 −xT f (12)

which is actually the generalized complementary energy studied by Gao and
Strang in nonconvex/nonsmooth variational problem [12], and the term
G(x, ς)= 1

2 |x|2ς is the complementary gap function. Gao and Strang proved
that if G(x, ς)�0, i.e. ς �0 in this finite dimensional case, L(x, ς) is a sad-
dle function and

min
x∈Rn

max
ς�0

L(x, ς)=max
ς�0

min
x∈Rn

L(x, ς).

It is easy to check that P(x)=maxς�0 L(x, ς), and P d(ς)=minx∈Rn L(x, ς)

if ς �=0. Thus the condition G(x, ς)�0, ∀x ∈Rn serves as a sufficient con-
dition for global minimizer, and

min
x∈Rn

P (x)= min
x∈Rn

max
ς>0

L(x, ς)=max
ς>0

P d(ς). (13)

Furthermore, in the study of post-buckling analysis of large deformed
beam theory (see [2]), the author discovered that if G(x, ς) � 0, then
L(x, ς) is a so-called super-Lagrangian. If (x̄, ς̄) is a critical point of
L(x, ς), and ς̄ <0, then in the neighborhood of (x̄, ς̄), we have either

P(x̄)= min
x∈Rn

max
ς<0

L(x, ς)=min
ς<0

max
x∈Rn

L(x, ς)=P d(ς̄), (14)

or

P(x̄)=max
x∈Rn

max
ς<0

L(x, ς)=max
ς<0

max
x∈Rn

L(x, ς)=P d(ς̄). (15)

This set of three relations (13–15) forms a so-called tri-duality theory in
nonconvex analysis [4,5], which was discovered first in post-buckling anal-
ysis of a large deformed beam theory [2]. The graphs of P(x) and P d(ς)

for n=1 are illustrated by Figure 1, where we can see that P d(ς) is strictly
concave for ς >0, while for ς <0, P d(ς) is nonconvex with one local min-
imizer and a local maximizer.

3.2. global minimizer for general case

For general case p � 1, the global minimizer of the problem (P) can be
identified by the following theorem.
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Figure 1. Triality theory: graphs of P(x) (dashed) and P d(ς) (solid) for n=1.

THEOREM 3. Suppose that for the given positive parameters αk, λk �0 ∀k∈
{1, . . . , p}, ς̄ is a solution of the dual algebraic Equation (7). If

ς̄ >ς+ =

√√√√√√√2α1

⎛

⎜⎜
⎝λ2 +

√√√√√ 2
α2

⎛

⎝λ3 +· · ·+
√√√√ 2

αp−2

(

λp−1 +
√

2
αp−1

λp

)⎞

⎠

⎞

⎟⎟
⎠,

then ς̄ is a global maximizer on the open domain (ς+,+∞), x̄ = (ς̄p!)−1f is
a global minimizer of P , and

P(x̄)= min
x∈Rn

P (x)=max
ς>ς+

P d(ς)=P d(ς̄). (16)

Proof. By using the sequential canonical dual transformation (see [5]), the
complementary function associated with the problem (P) is

L(x,ς)= 1
2
|x|2ςp!−

p∑

k=1

ςp!
ςk!

W ∗
k (ςk)−xT f, (17)

where ς = {ς1, . . . , ςp} ∈ Rp. It is easy to see that if ς > 0, i.e. ςk > 0 ∀k ∈
{1, . . . , p}, the Lagrangian L is convex in x ∈ Rn and concave in each
ςk (k =1, . . . , p). Thus, by the saddle-point theory (see [5]), we have

min
x∈Rn

P (x)= min
x∈Rn

max
ς>0

L(x,ς)=max
ς>0

min
x∈Rn

L(x,ς)=max
ς>0

P d
p (ς),

where

P d
p (ς)=− |f |2

2ςp!
−

p∑

k=1

ςp!
ςk!

W ∗
k (ςk)
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is concave for each ςk > 0 (k = 1,2, . . . , p). The criticality condition
δςk

P d
p (ς)=0 leads to Equation (6). Thus, under the condition ς >ς+,

min
x∈Rn

P (x)=max
ς>0

P d
p (ς)=max

ς>ς+
P d(ς).

This proves (16).

4. Applications

In this section, we present applications of the general theory obtained in
this paper to the following cases.

4.1. case p =1

We simply let α1 = 3, λ1 = 3/2, which gives h = 3.0. If we choose f =
{5,−3}/√2, then |f | < h and the dual algebraic Equation (11) has only
one real root ς1 = 1.93 > 0. By Theorem 2 we know that x1 = f/ς1 =
{1.46421,−1.46421} is a global minimizer and P(x1) = −7.66 = P d(ς1)

(Figure 2).
For f = {3,−3}/√2, we have |f | = h and the dual algebraic Equation

(11) has two real roots ς1 = 1.5 > 0 > ς2 = −3 = ς3. By Theorem 2 we
know that x1 = f/ς1 ={1.41421,−1.41421} is a global minimizer, x2 = f/ς2 =
{−0.707107,0.707107} is a local stationary point. It is easy to verify that

P(x1)=P d(ς1)=−5.63<P(x2)=P d(ς2)=4.5.

If we choose f ={1,−2}/√2, then |f |<h and the dual algebraic Equation
(11) has three real roots ς1 =0.838147>0>ς2 =−1.04125>ς3 =−4.29689.
By Theorem 2 we know that x1 = f/ς1 = {0.843655,−1.68731} is a global
minimizer, x2 = f/ς2 = {−0.679092,1.35818} is a local minimizer, and x3 =
f/ς3 ={−0.164562,0.329125} is local maximizer. It is easy to verify that

P(x1)=P d(ς1)=−2.87<P(x2)=P d(ς2)=2.58<P(x3)=P d(ς3)=3.66. (see

Figure 3).

4.2. case p =2

In this case, the dual function has the form

P d(ς)=− |f |2
2ςς2

−
(

1
α2

ς2
2 +λ2ς2 +ς2

(
1

2α1
ς2 +λ1ς

))
. (18)
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Figure 2. Algebraic curves |f |=φ1(ς) (left) and graphs of dual function P d (right). (a) |f |>h:
Unique solution. (b) |f |=h: two solutions. (c) |f |<h: three solutions.
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Figure 3. Graph of P(x) with three critical points: global minimizer x1 = {0.84,−1.69}, local
minimizer x2 ={−0.68,1.36}, and local maximizer x3 ={−0.16,0.33}.

Substituting ς2 = α2
2α1

ς2 −λ2α2 into (7), the dual algebraic equation

2ς2
(

α2

2α1
ς2 −λ2α2

)2( 1
α1

ς +λ1

)
=|f |2 (19)
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has at most seven real roots ς̄i (i =1, . . . ,7). Let

φ2(ς)=±ς

(
α2

2α1
ς2 −λ2α2

)√

2
(

1
α1

ς +λ1

)
,

and f = {0.5,−0.2}, α1 = 2, α2 = 1, and λ2 = 1. Then for different values
of λ1 the graphs of φ2(ς) and P d(ς) are shown in Figure 4. The graphs
of P(x) are shown in Figure 5 (for λ1 = 0 and λ1 = 1) and Figure 6 (for
λ1 = 2). Since ς+ = √

2α1λ2 = 2, we can see that the dual function P d(ς)

is strictly concave for ς > ς+ = 2. The dual algebraic Equation (19) has a
total of seven real solutions when λ1 =2, and the biggest ς1 =2.10>ς+ =2
gives the global minimizer x1 = f/ς1 = {2.29,−0.92}, and P(x1) = −1.32 =
P d(ς1). The smallest ς7 = −4.0 gives a local maximizer x7 = {−0.04,0.02}
and P(x7)=4.51=P d(ς7) (see Figure 6).
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Figure 4. Graphes of the algebraic curve φ2(ς) (left) and dual function P d(ς)

(right) (a) λ1 = 0: Three solutions ς3 = 0.73 < ς2 = 1.75 < ς1 = 2.16. (b)
λ1 = 1: Five solutions {−1.42,−0.46,0.36,1.85,2.12}. (c) λ1 = 2: Seven solutions
{−4.0,−2.18,−1.79,−0.29,0.27,1.88,2.10}.
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Figure 6. Graph of P(x) with λ1 =2.

4.3. case p =3

For p =3, the nonconvex function

P(x)= 1
2
α3

⎛

⎝1
2
α2

(
1
2
α1

(
1
2
|x|2 −λ1

)2

−λ2

)2

−λ3

⎞

⎠

2

−xT f

is a polynomial of degree d =23+1 =16. The dual function has the form

P d(ς)=− |f |2
2ςς2ς3

−
(

1
α3

ς2
3 +λ3ς3 +ς3

(
1
α2

ς2
2 +λ2ς2

)
+ς3ς2

(
1

2α1
ς2+λ1ς

))
,

(20)
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Figure 7. Graph of φ3(ς).

where ς2 = α2
2α1

ς2 − λ2α2, ς3 = α3
2α2

ς2
2 − λ3α3. The criticality condition

δP d(ς)=0 leads to the dual algebraic equation

φ2
3(ς)=|f |2, (21)

where

φ3(ς)=±ς

(
α2

2α1
ς2 −λ2α2

)(
α3

2α2

(
α2

2α1
ς2 −λ2α2

)2

−λ3α3

)√

2
(

1
α1

ς +λ1

)
.

If we choose α1 = 3, α2 = 1, α3 = 2 and λ1 = 2, λ2 = 3, λ3 = 2, the graph of
φ3(ς) is shown in Figure 7. In this case,

ς+ =

√√√√√2α1

⎛

⎝λ2 +
√

2
α2

λ3

⎞

⎠=5.48.

Particularly, if we let f = {1,−1}, the dual problem has a unique solution
ς1 = 5.48355 on the domain (ς+,∞), which leads to a global minimizer
x1 ={1.95649,−1.95649}, and we have P(x1)=−3.912=P d(ς1).
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