Complete Solutions and Extremality Criteria to Polynomial Optimization Problems

DAVID YANG GAO

Department of Mathematics, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA (e-mail: gao@vt.edu)

(Received 5 May 2005; accepted in revised form 13 September 2005)

Abstract. This paper presents a set of complete solutions to a class of polynomial optimization problems. By using the so-called *sequential canonical dual transformation* developed in the author's recent book [Gao, D.Y. (2000), Duality Principles in Nonconvex Systems: Theory, Method and Applications, Kluwer Academic Publishers, Dordrecht/Boston/London, xviii + 454 pp], the nonconvex polynomials in \mathbb{R}^n can be converted into an one-dimensional canonical dual optimization problem, which can be solved completely. Therefore, a set of complete solutions to the original problem is obtained. Both global minimizer and local extrema of certain special polynomials can be indentified by Gao-Strang's gap function and triality theory. For general nonconvex polynomial minimization problems, a sufficient condition is proposed to identify global minimizer. Applications are illustrated by several examples.

Key words: critical point theory, duality, global optimization, nonlinear programming, NP-hard problem, polynomial minimization.

1. Problem and Motivation

We consider polynomial minimization problems of the type (in short, the primal problem (\mathcal{P})):

$$\min\{P(\mathbf{x}) = W(\mathbf{x}) - \mathbf{x}^T \mathbf{f} : \mathbf{x} \in \mathbb{R}^n\},\tag{1}$$

where $\mathbf{x} = (x_1, x_2, ..., x_n)^T \in \mathbb{R}^n$ is a real vector, $\mathbf{f} \in \mathbb{R}^n$ is a given vector, and $W(\mathbf{x})$ is a polynomial of degree *d*. It is known that the polynomial minimization problem is NP-hard even when d = 4 (see [14]). Due to nonconvexity of the cost function $P(\mathbf{x})$, the problem (1) may possess many local minimizers and it represents a global optimization problem. It is known that the application of traditional local optimization procedures for solving nonconvex problems can not guarantee the identification of the global minima (see [13]). Therefore, many numerical methods and algorithms have been suggested recently for finding the lower bounds of polynomial optimization problems (see [1,15,16]).

The primary goal of this paper is to present a potentially useful canonical dual transformation method for solving a special polynomial minimization problem (\mathcal{P}) where W is a so-called *canonical polynomial* of degree $d=2^{p+1}$ (see [5]), defined by

$$W(\mathbf{x}) = \frac{1}{2} \alpha_p \left(\frac{1}{2} \alpha_{p-1} \left(\dots \left(\frac{1}{2} \alpha_1 \left(\frac{1}{2} |\mathbf{x}|^2 - \lambda_1 \right)^2 \dots \right)^2 - \lambda_{p-1} \right)^2 - \lambda_p \right)^2,$$
(2)

There α_i, λ_i are given parameters. The nonconvex function W appears in many applications. In the simplest case where p = 1,

$$W(\mathbf{x}) = \frac{1}{2}\alpha_1 \left(\frac{1}{2}|\mathbf{x}|^2 - \lambda_1\right)^2$$

is the so-called *double-well potential* of the scalar-valued function $u = |\mathbf{x}|$, which was first studied by van der Waals in fluids mechanics in 1895. Particularly, if n = 2, p = 1, then

$$W(x_1, x_2) = \frac{1}{2}\alpha_1 \left(\frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 - \lambda_1\right)^2$$

is the so-called "Mexican hat" function in cosmology and theoretical physics. In solid mechanics where the scalar function $u(\mathbf{x})$ is a field function, then $W(\mathbf{x}) = \frac{1}{2}\alpha_1(\frac{1}{2}u(\mathbf{x})^2 - \lambda_1)^2$ is the well-known second-order Landau potential in phase transitions of superconductivity and shape memory alloys. In post-buckling analysis of extended beam theory developed by the author [7], each potential well of W represents a possible buckled beam state. Numerical discretizations of these mechanics problems usually lead to a large-scale polynomial optimization problems of type (\mathcal{P}). The criticality condition $\nabla P(\mathbf{x}) = 0$ gives a coupled, nonlinear algebraic system with n unknown $\mathbf{x} \in \mathbb{R}^n$:

$$\prod_{k=1}^{p} \alpha_k (\xi_k(\mathbf{x}) - \lambda_k) \mathbf{x} = \mathbf{f},$$
(3)

where

$$\xi_0(\mathbf{x}) = |\mathbf{x}|, \quad \xi_k(\mathbf{x}) = \frac{1}{2}\alpha_{k-1}(\xi_{k-1}(\mathbf{x}) - \lambda_{k-1})^2, \quad k = 1, \dots, p,$$
(4)

and $\alpha_0 = 1$, $\lambda_0 = 0$. Clearly, direct methods for solving this coupled, nonlinear algebraic system are very difficult. Also Equation (3) is the only a necessary condition for local minima. In this paper, we will present a complete set of solutions to Equation (3) with sufficient conditions for global and local minima by using the *sequential canonical dual transformation*. This method has been successfully applied for solving a large class of nonconvex variational analysis and global optimization problems (see [3, 6, 10, 11]).

2. Complete Solutions

By the use of the sequential canonical dual transformation developed in [5], the perfect dual problem (with zero duality gap) ((\mathcal{P}^d) in short) of the polynomial optimization (\mathcal{P}) can be formulated as the following

$$(\mathcal{P}^d): \max_{\varsigma} \left\{ P^d(\varsigma) = -\frac{|\mathbf{f}|^2}{2\varsigma_p!} - \sum_{k=1}^p \frac{\varsigma_p!}{\varsigma_k!} W_k^*(\varsigma_k) \right\},$$
(5)

where $\varsigma_p! = \varsigma_p \varsigma_{p-1} \cdots \varsigma_2 \varsigma_1$, and

$$\varsigma_1 = \varsigma, \qquad \varsigma_k = \alpha_k \left(\frac{1}{2\alpha_{k-1}} \varsigma_{k-1}^2 - \lambda_k \right), \quad k = 2, \dots, p.$$
 (6)

 $W_k^*(\varsigma_k)$ is a quadratic function of ς_k defined by

$$W_k^*(\varsigma_k) = \frac{1}{2\alpha_k} \varsigma_k^2 + \lambda_k \varsigma_k$$

The dual problem is a nonlinear programming with only one variable $\varsigma \in \mathbb{R}$, which is much easier than the primal problem. Clearly, for any $\varsigma \neq 0$ and $\varsigma_k^2 \neq 2\alpha_k \lambda_{k+1}$, the dual function P^d is well defined and the criticality condition $\delta P^d(\varsigma) = 0$ leads to a dual algebraic equation

$$2(\varsigma_p!)^2(\alpha_1^{-1}\varsigma + \lambda_1) = |\mathbf{f}|^2.$$
⁽⁷⁾

THEOREM 1 (Complete Solution Set). For any given parameters α_k , λ_k (k = 1, ..., p) and the input **f**, the dual algebraic Equation (7) has at most $s = 2^{p+1} - 1$ real solutions: $\bar{\varsigma}^{(i)}$ (i = 1, ..., s). For each dual solution $\bar{\varsigma} \in \mathbb{R}$, the vector $\bar{\mathbf{x}}$ defined by

$$\bar{\mathbf{x}}(\bar{\boldsymbol{\varsigma}}) = (\bar{\boldsymbol{\varsigma}}_p!)^{-1} \mathbf{f}$$
(8)

is a critical point of the primal problem (\mathcal{P}) and

 $P(\bar{\mathbf{x}}) = P^d(\bar{\boldsymbol{\zeta}}).$

Conversely, every critical point $\bar{\mathbf{x}}$ of the polynomial $P(\mathbf{x})$ can be written in form (8) for some dual solution $\bar{\boldsymbol{\varsigma}} \in \mathbb{R}$.

Proof. We first prove the vector defined by (8) solves (3). Substituting $(\bar{\varsigma}_p!)^{-1}\mathbf{f} = \bar{\mathbf{x}}$ into the dual algebraic Equation (7), we obtain

$$\alpha_1\left(\frac{1}{2}|\bar{\mathbf{x}}|^2 - \lambda_1\right) = \alpha_1(\bar{\xi}_1 - \lambda_1) = \bar{\varsigma}.$$
(9)

Thus from (6) we have

$$\bar{\varsigma}_k = \alpha_k(\bar{\xi}_k - \lambda_k), \quad k = 1, \dots, p.$$
(10)

Substituting

$$\bar{\mathbf{x}}(\bar{\boldsymbol{\varsigma}}) = (\bar{\boldsymbol{\varsigma}}_p!)^{-1} \mathbf{f} = \left(\prod_{k=1}^p \alpha_k (\bar{\boldsymbol{\xi}}_k - \lambda_k)\right)^{-1} \mathbf{f}$$

into the left hand side of the canonical Equation (3) leads to **f**. Thus for every solution $\bar{\varsigma}$ of the dual algebraic Equation (7), $\bar{\mathbf{x}} = (\bar{\varsigma}_p!)^{-1}\mathbf{f}$ solves the canonical Equation (3), and is a critical point of *P*.

Conversely, if $\bar{\mathbf{x}}$ is a solution of the couple nonlinear system (3), then it can be written in the form $\bar{\mathbf{x}} = (\bar{\varsigma}_p!)^{-1}\mathbf{f}$ with $\bar{\varsigma}_k = \alpha_k(\bar{\xi}_k - \lambda_k), \ k = 1, \dots, p$ and $\bar{\xi}_1 = \frac{1}{2}|\bar{\mathbf{x}}|^2$. Thus in terms of $\bar{\varsigma}_k$, we have

$$\bar{\xi}_1 = \frac{1}{2} |\bar{\mathbf{x}}|^2 = \frac{1}{2} (\bar{\varsigma}_p!)^{-2} |\mathbf{f}|^2 = \frac{1}{\alpha_1} \bar{\varsigma}_1 + \lambda_1.$$

This is the dual algebraic Equation (7), in which $\bar{\zeta}_k = \alpha_k (\bar{\xi}_k - \lambda_k)$. Since

$$\bar{\xi}_{k+1} = \frac{1}{2} \alpha_k (\bar{\xi}_k - \lambda_k)^2 = \frac{1}{2\alpha_k} \bar{\zeta}_k^2 = \frac{1}{\alpha_{k+1}} \bar{\zeta}_{k+1} + \lambda_{k+1},$$

we have

$$\bar{\varsigma}_{k+1} = \alpha_{k+1} \left(\frac{1}{2\alpha_k} \bar{\varsigma}_k^2 - \lambda_{k+1} \right).$$

This shows that every solution of the coupled nonlinear system (3) can be written in the form $\bar{\mathbf{x}} = (\bar{\varsigma}_p!)^{-1}\mathbf{f}$ for some solution $\bar{\varsigma}$ of the dual algebraic Equation (7).

3. Global and Local Optimality Criteria

This section will provide some sufficient conditions for global and local extrema.

3.1. TRIALITY THEORY FOR CASE p=1

The primal problem (\mathcal{P}) for p=1 is to find all critical points of the nonconvex function

$$P(\mathbf{x}) = \frac{1}{2}\alpha_1 \left(\frac{1}{2}|\mathbf{x}|^2 - \lambda_1\right)^2 - \mathbf{x}^T \mathbf{f}.$$

The canonical dual function for this simple case is

$$P^{d}(\varsigma) = -\frac{|\mathbf{f}|^{2}}{2\varsigma} - \frac{1}{2}\alpha_{1}^{-1}\varsigma^{2} - \varsigma\lambda_{1}.$$

The dual algebraic equation

$$2\varsigma^2(\alpha_1^{-1}\varsigma + \lambda_1) = |\mathbf{f}|^2 \tag{11}$$

has at most three real roots $\bar{\varsigma}^{(i)}$ (i = 1, 2, 3), and the vector $\bar{\mathbf{x}}_i = \mathbf{f}/\bar{\varsigma}^{(i)}$ is a critical point of the nonconvex function $P(\mathbf{x})$. Let $\phi_1(\varsigma) = \pm \varsigma \sqrt{2(\alpha_1^{-1}\varsigma + \lambda_1)}$. In algebraic geometry, the graph of $\phi_1(\varsigma)$ is the so-called singular algebraic curve in $(\varsigma, |\mathbf{f}|)$ -space (see Figure 2).

The following theorem reveals the extremality of these critical points.

THEOREM 2 (Triality theorem [5]). Let $\lambda_1, \alpha_1 > 0$ be two given parameters. If $|\mathbf{f}| < h = \sqrt{8\alpha_1^2 \lambda_1^3/27}$, the dual algebraic Equation (11) has three real roots satisfying $\bar{\varsigma}^{(1)} > 0 > \bar{\varsigma}^{(2)} \ge \bar{\varsigma}^{(3)}$, and the vector $\bar{\mathbf{x}}_1 = \mathbf{f}/\bar{\varsigma}^{(1)}$ is a global minimizer, $\bar{\mathbf{x}}_2 = \mathbf{f}/\bar{\varsigma}^{(2)}$ is a local minimizer, while $\bar{\mathbf{x}}_3 = \mathbf{f}/\bar{\varsigma}^{(3)}$ is a local maximizer. If $|\mathbf{f}| < h$, the dual algebraic Equation (11) has a unique root $\bar{\varsigma}^{(1)} > 0$, and the vector $\bar{\mathbf{x}}_1$ is a global minimizer of the function $P(\mathbf{x})$. However, if $|\mathbf{f}| = h$, the dual algebraic Equation (11) has only two roots $\bar{\varsigma}^{(1)} > 0 > \bar{\varsigma}^{(2)}$, the vector $\bar{\mathbf{x}}_1 = \mathbf{f}/\bar{\varsigma}^{(1)}$ is a global minimizer of the function $P(\mathbf{x})$, while the vector $\bar{\mathbf{x}}_2 = \mathbf{f}/\bar{\varsigma}^{(2)}$ is a local stationary point.

REMARK. For p=1, the nonconvex function $W(\mathbf{x})$ is a double-well function of $|\mathbf{x}|$. By using the method introduced by Gao and Strang [12], we let $\xi_1 = \Lambda_1(\mathbf{x}) = \frac{1}{2}|\mathbf{x}|^2$, then $W(\mathbf{x})$ can be written as $W(\mathbf{x}) = W_1(\Lambda_1(\mathbf{x}))$, where $W_1(\xi_1) = \frac{1}{2}\alpha_1(\xi_1 - \lambda_1)^2$ is the canonical function of ξ_1 (see [5]). Its conjugate function can be easily obtained by the Legendre transformation

$$W_1^*(\varsigma) = \{\xi_1 \varsigma - W_1(\xi_1) | \varsigma = \partial W_1(\xi_1) / \partial \xi_1 = \alpha_1(\xi_1 - \lambda_1)\} = \frac{1}{2}\alpha_1^{-1}\varsigma^2 + \lambda_1\varsigma.$$

Thus, replacing $W(\mathbf{x})$ by $W_1(\Lambda_1(\mathbf{x})) = \Lambda_1(\mathbf{x})\varsigma - W_1^*(\varsigma)$, the nonconvex function $P(\mathbf{x})$ can be written in the following so-called extended Lagrange form:

$$L(\mathbf{x},\varsigma) = \frac{1}{2} |\mathbf{x}|^2 \varsigma - \frac{1}{2} \alpha_1^{-1} \varsigma^2 - \varsigma \lambda_1 - \mathbf{x}^T \mathbf{f}$$
(12)

which is actually the generalized complementary energy studied by Gao and Strang in nonconvex/nonsmooth variational problem [12], and the term $G(\mathbf{x}, \varsigma) = \frac{1}{2} |\mathbf{x}|^2 \varsigma$ is the complementary gap function. Gao and Strang proved that if $G(\mathbf{x}, \varsigma) \ge 0$, i.e. $\varsigma \ge 0$ in this finite dimensional case, $L(\mathbf{x}, \varsigma)$ is a saddle function and

$$\min_{\mathbf{x}\in\mathbb{R}^n}\max_{\varsigma\geqslant 0}L(\mathbf{x},\varsigma)=\max_{\varsigma\geqslant 0}\min_{\mathbf{x}\in\mathbb{R}^n}L(\mathbf{x},\varsigma).$$

It is easy to check that $P(\mathbf{x}) = \max_{\varsigma \ge 0} L(\mathbf{x}, \varsigma)$, and $P^d(\varsigma) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \varsigma)$ if $\varsigma \ne 0$. Thus the condition $G(\mathbf{x}, \varsigma) \ge 0$, $\forall \mathbf{x} \in \mathbb{R}^n$ serves as a sufficient condition for global minimizer, and

$$\min_{\mathbf{x}\in\mathbb{R}^n} P(\mathbf{x}) = \min_{\mathbf{x}\in\mathbb{R}^n} \max_{\varsigma>0} L(\mathbf{x},\varsigma) = \max_{\varsigma>0} P^d(\varsigma).$$
(13)

Furthermore, in the study of post-buckling analysis of large deformed beam theory (see [2]), the author discovered that if $G(\mathbf{x}, \varsigma) \leq 0$, then $L(\mathbf{x}, \varsigma)$ is a so-called super-Lagrangian. If $(\bar{\mathbf{x}}, \bar{\varsigma})$ is a critical point of $L(\mathbf{x}, \varsigma)$, and $\bar{\varsigma} < 0$, then in the neighborhood of $(\bar{\mathbf{x}}, \bar{\varsigma})$, we have either

$$P(\bar{\mathbf{x}}) = \min_{\mathbf{x} \in \mathbb{R}^n} \max_{\varsigma < 0} L(\mathbf{x}, \varsigma) = \min_{\varsigma < 0} \max_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \varsigma) = P^d(\bar{\varsigma}),$$
(14)

or

$$P(\bar{\mathbf{x}}) = \max_{\mathbf{x} \in \mathbb{R}^n} \max_{\varsigma < 0} L(\mathbf{x}, \varsigma) = \max_{\varsigma < 0} \max_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \varsigma) = P^d(\bar{\varsigma}).$$
(15)

This set of three relations (13–15) forms a so-called tri-duality theory in nonconvex analysis [4,5], which was discovered first in post-buckling analysis of a large deformed beam theory [2]. The graphs of P(x) and $P^d(\varsigma)$ for n = 1 are illustrated by Figure 1, where we can see that $P^d(\varsigma)$ is strictly concave for $\varsigma > 0$, while for $\varsigma < 0$, $P^d(\varsigma)$ is nonconvex with one local minimizer and a local maximizer.

3.2. GLOBAL MINIMIZER FOR GENERAL CASE

For general case $p \ge 1$, the global minimizer of the problem (\mathcal{P}) can be identified by the following theorem.

136

Figure 1. Triality theory: graphs of P(x) (dashed) and $P^{d}(\varsigma)$ (solid) for n = 1.

THEOREM 3. Suppose that for the given positive parameters α_k , $\lambda_k \ge 0 \forall k \in \{1, ..., p\}$, $\overline{\zeta}$ is a solution of the dual algebraic Equation (7). If

$$\bar{\varsigma} > \varsigma_{+} = \sqrt{2\alpha_{1}\left(\lambda_{2} + \sqrt{\frac{2}{\alpha_{2}}\left(\lambda_{3} + \dots + \sqrt{\frac{2}{\alpha_{p-2}}\left(\lambda_{p-1} + \sqrt{\frac{2}{\alpha_{p-1}}\lambda_{p}}\right)\right)}\right)},$$

then $\bar{\varsigma}$ is a global maximizer on the open domain $(\varsigma_+, +\infty)$, $\bar{\mathbf{x}} = (\bar{\varsigma}_p!)^{-1} \mathbf{f}$ is a global minimizer of P, and

$$P(\bar{\mathbf{x}}) = \min_{\mathbf{x} \in \mathbb{R}^n} P(\mathbf{x}) = \max_{\varsigma > \varsigma_+} P^d(\varsigma) = P^d(\bar{\varsigma}).$$
(16)

Proof. By using the sequential canonical dual transformation (see [5]), the complementary function associated with the problem (\mathcal{P}) is

$$L(\mathbf{x}, \boldsymbol{\varsigma}) = \frac{1}{2} |\mathbf{x}|^2 \varsigma_p! - \sum_{k=1}^p \frac{\varsigma_p!}{\varsigma_k!} W_k^*(\varsigma_k) - \mathbf{x}^T \mathbf{f}, \qquad (17)$$

where $\boldsymbol{\varsigma} = \{\varsigma_1, \ldots, \varsigma_p\} \in \mathbb{R}^p$. It is easy to see that if $\boldsymbol{\varsigma} > 0$, i.e. $\varsigma_k > 0 \ \forall k \in \{1, \ldots, p\}$, the Lagrangian *L* is convex in $\mathbf{x} \in \mathbb{R}^n$ and concave in each $\varsigma_k (k = 1, \ldots, p)$. Thus, by the saddle-point theory (see [5]), we have

$$\min_{\mathbf{x}\in\mathbb{R}^n} P(\mathbf{x}) = \min_{\mathbf{x}\in\mathbb{R}^n} \max_{\boldsymbol{\varsigma}>0} L(\mathbf{x},\boldsymbol{\varsigma}) = \max_{\boldsymbol{\varsigma}>0} \min_{\mathbf{x}\in\mathbb{R}^n} L(\mathbf{x},\boldsymbol{\varsigma}) = \max_{\boldsymbol{\varsigma}>0} P_p^d(\boldsymbol{\varsigma}),$$

where

$$P_p^d(\boldsymbol{\varsigma}) = -\frac{|\mathbf{f}|^2}{2\varsigma_p!} - \sum_{k=1}^p \frac{\varsigma_p!}{\varsigma_k!} W_k^*(\varsigma_k)$$

is concave for each $\zeta_k > 0$ (k = 1, 2, ..., p). The criticality condition $\delta_{\zeta_k} P_p^d(\varsigma) = 0$ leads to Equation (6). Thus, under the condition $\varsigma > \varsigma_+$,

$$\min_{\mathbf{x}\in\mathbf{R}^n} P(\mathbf{x}) = \max_{\boldsymbol{\varsigma}>0} P_p^d(\boldsymbol{\varsigma}) = \max_{\boldsymbol{\varsigma}>\boldsymbol{\varsigma}_+} P^d(\boldsymbol{\varsigma}).$$

This proves (16).

4. Applications

In this section, we present applications of the general theory obtained in this paper to the following cases.

4.1. CASE p = 1

We simply let $\alpha_1 = 3$, $\lambda_1 = 3/2$, which gives h = 3.0. If we choose $\mathbf{f} = \{5, -3\}/\sqrt{2}$, then $|\mathbf{f}| < h$ and the dual algebraic Equation (11) has only one real root $\varsigma_1 = 1.93 > 0$. By Theorem 2 we know that $\mathbf{x}_1 = \mathbf{f}/\varsigma_1 = \{1.46421, -1.46421\}$ is a global minimizer and $P(\mathbf{x}_1) = -7.66 = P^d(\varsigma_1)$ (Figure 2).

For $\mathbf{f} = \{3, -3\}/\sqrt{2}$, we have $|\mathbf{f}| = h$ and the dual algebraic Equation (11) has two real roots $\varsigma_1 = 1.5 > 0 > \varsigma_2 = -3 = \varsigma_3$. By Theorem 2 we know that $\mathbf{x}_1 = \mathbf{f}/\varsigma_1 = \{1.41421, -1.41421\}$ is a global minimizer, $\mathbf{x}_2 = \mathbf{f}/\varsigma_2 = \{-0.707107, 0.707107\}$ is a local stationary point. It is easy to verify that

$$P(\mathbf{x}_1) = P^d(\varsigma_1) = -5.63 < P(\mathbf{x}_2) = P^d(\varsigma_2) = 4.5.$$

If we choose $\mathbf{f} = \{1, -2\}/\sqrt{2}$, then $|\mathbf{f}| < h$ and the dual algebraic Equation (11) has three real roots $\varsigma_1 = 0.838147 > 0 > \varsigma_2 = -1.04125 > \varsigma_3 = -4.29689$. By Theorem 2 we know that $\mathbf{x}_1 = \mathbf{f}/\varsigma_1 = \{0.843655, -1.68731\}$ is a global minimizer, $\mathbf{x}_2 = \mathbf{f}/\varsigma_2 = \{-0.679092, 1.35818\}$ is a local minimizer, and $\mathbf{x}_3 = \mathbf{f}/\varsigma_3 = \{-0.164562, 0.329125\}$ is local maximizer. It is easy to verify that

 $P(\mathbf{x}_1) = P^d(\varsigma_1) = -2.87 < P(\mathbf{x}_2) = P^d(\varsigma_2) = 2.58 < P(\mathbf{x}_3) = P^d(\varsigma_3) = 3.66.$ (see Figure 3).

4.2. Case p = 2

In this case, the dual function has the form

$$P^{d}(\varsigma) = -\frac{|\mathbf{f}|^{2}}{2\varsigma\varsigma_{2}} - \left(\frac{1}{\alpha_{2}}\varsigma_{2}^{2} + \lambda_{2}\varsigma_{2} + \varsigma_{2}\left(\frac{1}{2\alpha_{1}}\varsigma^{2} + \lambda_{1}\varsigma\right)\right).$$
(18)

Figure 2. Algebraic curves $|\mathbf{f}| = \phi_1(\varsigma)$ (left) and graphs of dual function P^d (right). (a) $|\mathbf{f}| > h$: Unique solution. (b) $|\mathbf{f}| = h$: two solutions. (c) $|\mathbf{f}| < h$: three solutions.

Figure 3. Graph of $P(\mathbf{x})$ with three critical points: global minimizer $\mathbf{x}_1 = \{0.84, -1.69\}$, local minimizer $\mathbf{x}_2 = \{-0.68, 1.36\}$, and local maximizer $\mathbf{x}_3 = \{-0.16, 0.33\}$.

Substituting $\varsigma_2 = \frac{\alpha_2}{2\alpha_1} \varsigma^2 - \lambda_2 \alpha_2$ into (7), the dual algebraic equation

$$2\varsigma^{2} \left(\frac{\alpha_{2}}{2\alpha_{1}}\varsigma^{2} - \lambda_{2}\alpha_{2}\right)^{2} \left(\frac{1}{\alpha_{1}}\varsigma + \lambda_{1}\right) = |\mathbf{f}|^{2}$$
(19)

has at most seven real roots $\bar{\varsigma}_i$ (i = 1, ..., 7). Let

$$\phi_2(\varsigma) = \pm \varsigma \left(\frac{\alpha_2}{2\alpha_1} \varsigma^2 - \lambda_2 \alpha_2 \right) \sqrt{2 \left(\frac{1}{\alpha_1} \varsigma + \lambda_1 \right)},$$

and $\mathbf{f} = \{0.5, -0.2\}$, $\alpha_1 = 2$, $\alpha_2 = 1$, and $\lambda_2 = 1$. Then for different values of λ_1 the graphs of $\phi_2(\varsigma)$ and $P^d(\varsigma)$ are shown in Figure 4. The graphs of $P(\mathbf{x})$ are shown in Figure 5 (for $\lambda_1 = 0$ and $\lambda_1 = 1$) and Figure 6 (for $\lambda_1 = 2$). Since $\varsigma_+ = \sqrt{2\alpha_1\lambda_2} = 2$, we can see that the dual function $P^d(\varsigma)$ is strictly concave for $\varsigma > \varsigma_+ = 2$. The dual algebraic Equation (19) has a total of seven real solutions when $\lambda_1 = 2$, and the biggest $\varsigma_1 = 2.10 > \varsigma_+ = 2$ gives the global minimizer $\mathbf{x}_1 = \mathbf{f}/\varsigma_1 = \{2.29, -0.92\}$, and $P(\mathbf{x}_1) = -1.32 =$ $P^d(\varsigma_1)$. The smallest $\varsigma_7 = -4.0$ gives a local maximizer $\mathbf{x}_7 = \{-0.04, 0.02\}$ and $P(\mathbf{x}_7) = 4.51 = P^d(\varsigma_7)$ (see Figure 6).

Figure 4. Graphes of the algebraic curve $\phi_2(\varsigma)$ (left) and dual function $P^d(\varsigma)$ (right) (a) $\lambda_1 = 0$: Three solutions $\varsigma_3 = 0.73 < \varsigma_2 = 1.75 < \varsigma_1 = 2.16$. (b) $\lambda_1 = 1$: Five solutions $\{-1.42, -0.46, 0.36, 1.85, 2.12\}$. (c) $\lambda_1 = 2$: Seven solutions $\{-4.0, -2.18, -1.79, -0.29, 0.27, 1.88, 2.10\}$.

Figure 5. Graphs of $P(\mathbf{x})$. (a) $\lambda_1 = 0$. (b) $\lambda_1 = 1$.

Figure 6. Graph of $P(\mathbf{x})$ with $\lambda_1 = 2$.

4.3. CASE p = 3

For p=3, the nonconvex function

$$P(\mathbf{x}) = \frac{1}{2}\alpha_3 \left(\frac{1}{2}\alpha_2 \left(\frac{1}{2}\alpha_1 \left(\frac{1}{2} |\mathbf{x}|^2 - \lambda_1 \right)^2 - \lambda_2 \right)^2 - \lambda_3 \right)^2 - \mathbf{x}^T \mathbf{f}$$

is a polynomial of degree $d = 2^{3+1} = 16$. The dual function has the form

$$P^{d}(\varsigma) = -\frac{|\mathbf{f}|^{2}}{2\varsigma\varsigma_{2}\varsigma_{3}} - \left(\frac{1}{\alpha_{3}}\varsigma_{3}^{2} + \lambda_{3}\varsigma_{3} + \varsigma_{3}\left(\frac{1}{\alpha_{2}}\varsigma_{2}^{2} + \lambda_{2}\varsigma_{2}\right) + \varsigma_{3}\varsigma_{2}\left(\frac{1}{2\alpha_{1}}\varsigma^{2} + \lambda_{1}\varsigma\right)\right),$$
(20)

Figure 7. Graph of $\phi_3(\varsigma)$.

where $\varsigma_2 = \frac{\alpha_2}{2\alpha_1}\varsigma^2 - \lambda_2\alpha_2$, $\varsigma_3 = \frac{\alpha_3}{2\alpha_2}\varsigma_2^2 - \lambda_3\alpha_3$. The criticality condition $\delta P^d(\varsigma) = 0$ leads to the dual algebraic equation

$$\phi_3^2(\varsigma) = |\mathbf{f}|^2,\tag{21}$$

where

$$\phi_{3}(\varsigma) = \pm \varsigma \left(\frac{\alpha_{2}}{2\alpha_{1}}\varsigma^{2} - \lambda_{2}\alpha_{2}\right) \left(\frac{\alpha_{3}}{2\alpha_{2}}\left(\frac{\alpha_{2}}{2\alpha_{1}}\varsigma^{2} - \lambda_{2}\alpha_{2}\right)^{2} - \lambda_{3}\alpha_{3}\right) \sqrt{2\left(\frac{1}{\alpha_{1}}\varsigma + \lambda_{1}\right)}.$$

If we choose $\alpha_1 = 3$, $\alpha_2 = 1$, $\alpha_3 = 2$ and $\lambda_1 = 2$, $\lambda_2 = 3$, $\lambda_3 = 2$, the graph of $\phi_3(\varsigma)$ is shown in Figure 7. In this case,

$$\varsigma_{+} = \sqrt{2\alpha_1 \left(\lambda_2 + \sqrt{\frac{2}{\alpha_2}\lambda_3}\right)} = 5.48.$$

Particularly, if we let $\mathbf{f} = \{1, -1\}$, the dual problem has a unique solution $\varsigma_1 = 5.48355$ on the domain (ς_+, ∞) , which leads to a global minimizer $\mathbf{x}_1 = \{1.95649, -1.95649\}$, and we have $P(\mathbf{x}_1) = -3.912 = P^d(\varsigma_1)$.

Acknowledgement

This work was supported by National Science Foundation Grant (CCF-0514768). Comments from Professor Panos Pardalos and his student O. Prokopyev at the University of Florida are acknowledged.

References

- 1. Demmel, J.W., Nie, J. and Sturmfels, B. (2005), Minimizing polynomials via sum of squares over the gradient ideal. Preprint.
- Gao, D.Y. (1997), Dual extremum principles in finite deformation theory with applications in post-buckling analysis of nonlinear beam model, *Applied Mechanics Reviews*, *ASME* 50(11), November, S64–S71.
- 3. Gao, D.Y. (1998), Duality, triality and complementary extremum principles in nonconvex parametric variational problems with applications, *IMA Journal of Applied Mathematics* 61, 199–235.
- Gao, D.Y. (1999), Duality-mathematics, Wiley Encyclopedia of Electronical and Electronical Engineering 6, 68–77.
- 5. Gao, D.Y. (2000), *Duality Principles in Nonconvex Systems: Theory, Methods and Applications*, Kluwer Academic Publishers, Dordrecht/Boston/London, xviii+454 pp.
- 6. Gao, D.Y. (2000), Analytic solution and triality theory for nonconvex and nonsmooth variational problems with applications, *Nonlinear Analysis* 42(7), 1161–1193.
- 7. Gao, D.Y. (2000), Finite deformation beam models and triality theory in dynamical post-buckling analysis, *International Journal Non-Linear Mechanics* 35, 103–131.
- 8. Gao, D.Y. (2000), Canonical dual transformation method and generalized triality theory in nonsmooth global optimization, *Journal of Global Optimization* 17(1/4), pp. 127–160.
- Gao, D.Y. (2001), Tri-duality in global optimization, In: Floudas, C.A. and Pardalos, P.D. (eds.), *Encyclopedia of Optimization Vol. 1*, Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 485–491.
- 10. Gao, D.Y. (2003), Perfect duality theory and complete set of, solutions to a class of global optimization, *Optimization* 52(4–5), 467–493.
- Gao, D.Y. (2004), Complete solutions to constrained quadratic optimization problems, *Journal of Global Optimisation*, special issue on Duality, edited by D.Y. Gao and K.L. Teo. 29, 377–399.
- 12. Gao, D.Y. and Strang, G. (1989), Geometric nonlinearity: potential energy, complementary energy, and the gap function, *Quarterly of Applied Mathmatics* 47(3), 487–504.
- 13. Horst, R., Pardalos, P.M. and Van Thoai, N. (2000), *Introduction to Global Optimization*, Kluwer Academic Publishers.
- Nesterov, Y. (2000), Squared functional systems and optimization problems, In: Frenk, H. et al. (eds.) *High Performance Optimization*, Kluwer Academic Publishers, pp. 405–440.
- 15. Lasserre, J. (2001), Global optimization with polynomials and the problem of moments. *SIAM Journal of Optimization* 11(3), 796–817.
- Parrilo, P. and Sturmfels, B. (2001), Minimizing polynomial functions, In: Basu, S. and Gonzalez-Vega, L. (eds.), *Proceedings of DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science*, American Mathematical Society, 2003, pp. 83–100.