Complete Solutions and Extremality Criteria to Polynomial Optimization Problems

DAVID YANG GAO
Department of Mathematics, Virginia Polytechnic Institute \& State University, Blacksburg, VA 24061, USA (e-mail: gao@vt.edu)

(Received 5 May 2005; accepted in revised form 13 September 2005)

Abstract

This paper presents a set of complete solutions to a class of polynomial optimization problems. By using the so-called sequential canonical dual transformation developed in the author's recent book [Gao, D.Y. (2000), Duality Principles in Nonconvex Systems: Theory, Method and Applications, Kluwer Academic Publishers, Dordrecht/Boston/London, xviii $+454 \mathrm{pp}]$, the nonconvex polynomials in \mathbb{R}^{n} can be converted into an one-dimensional canonical dual optimization problem, which can be solved completely. Therefore, a set of complete solutions to the original problem is obtained. Both global minimizer and local extrema of certain special polynomials can be indentified by Gao-Strang's gap function and triality theory. For general nonconvex polynomial minimization problems, a sufficient condition is proposed to identify global minimizer. Applications are illustrated by several examples.

Key words: critical point theory, duality, global optimization, nonlinear programming, NP-hard problem, polynomial minimization.

1. Problem and Motivation

We consider polynomial minimization problems of the type (in short, the primal problem (\mathcal{P})):

$$
\begin{equation*}
\min \left\{P(\mathbf{x})=W(\mathbf{x})-\mathbf{x}^{T} \mathbf{f}: \mathbf{x} \in \mathbb{R}^{n}\right\} \tag{1}
\end{equation*}
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$ is a real vector, $\mathbf{f} \in \mathbb{R}^{n}$ is a given vector, and $W(\mathbf{x})$ is a polynomial of degree d. It is known that the polynomial minimization problem is NP-hard even when $d=4$ (see [14]). Due to nonconvexity of the cost function $P(\mathbf{x})$, the problem (1) may possess many local minimizers and it represents a global optimization problem. It is known that the application of traditional local optimization procedures for solving nonconvex problems can not guarantee the identification of the global minima (see [13]). Therefore, many numerical methods and algorithms have been suggested recently for finding the lower bounds of polynomial optimization problems (see $[1,15,16]$).

The primary goal of this paper is to present a potentially useful canonical dual transformation method for solving a special polynomial minimization problem (\mathcal{P}) where W is a so-called canonical polynomial of degree $d=2^{p+1}$ (see [5]), defined by

$$
\begin{equation*}
W(\mathbf{x})=\frac{1}{2} \alpha_{p}\left(\frac{1}{2} \alpha_{p-1}\left(\ldots\left(\frac{1}{2} \alpha_{1}\left(\frac{1}{2}|\mathbf{x}|^{2}-\lambda_{1}\right)^{2} \ldots\right)^{2}-\lambda_{p-1}\right)^{2}-\lambda_{p}\right)^{2}, \tag{2}
\end{equation*}
$$

There α_{i}, λ_{i} are given parameters. The nonconvex function W appears in many applications. In the simplest case where $p=1$,

$$
W(\mathbf{x})=\frac{1}{2} \alpha_{1}\left(\frac{1}{2}|\mathbf{x}|^{2}-\lambda_{1}\right)^{2}
$$

is the so-called double-well potential of the scalar-valued function $u=|\mathbf{x}|$, which was first studied by van der Waals in fluids mechanics in 1895. Particularly, if $n=2, p=1$, then

$$
W\left(x_{1}, x_{2}\right)=\frac{1}{2} \alpha_{1}\left(\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}-\lambda_{1}\right)^{2}
$$

is the so-called "Mexican hat" function in cosmology and theoretical physics. In solid mechanics where the scalar function $u(\mathbf{x})$ is a field function, then $W(\mathbf{x})=\frac{1}{2} \alpha_{1}\left(\frac{1}{2} u(\mathbf{x})^{2}-\lambda_{1}\right)^{2}$ is the well-known second-order Landau potential in phase transitions of superconductivity and shape memory alloys. In post-buckling analysis of extended beam theory developed by the author [7], each potential well of W represents a possible buckled beam state. Numerical discretizations of these mechanics problems usually lead to a large-scale polynomial optimization problems of type (\mathcal{P}). The criticality condition $\nabla P(\mathbf{x})=0$ gives a coupled, nonlinear algebraic system with n unknown $\mathbf{x} \in \mathbb{R}^{n}$:

$$
\begin{equation*}
\prod_{k=1}^{p} \alpha_{k}\left(\xi_{k}(\mathbf{x})-\lambda_{k}\right) \mathbf{x}=\mathbf{f}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi_{0}(\mathbf{x})=|\mathbf{x}|, \quad \xi_{k}(\mathbf{x})=\frac{1}{2} \alpha_{k-1}\left(\xi_{k-1}(\mathbf{x})-\lambda_{k-1}\right)^{2}, \quad k=1, \ldots, p \tag{4}
\end{equation*}
$$

and $\alpha_{0}=1, \lambda_{0}=0$. Clearly, direct methods for solving this coupled, nonlinear algebraic system are very difficult. Also Equation (3) is the only a necessary condition for local minima. In this paper, we will present a complete set of solutions to Equation (3) with sufficient conditions for global and local minima by using the sequential canonical dual transformation. This method has been successfully applied for solving a large class of nonconvex variational analysis and global optimization problems (see [3,6,10,11]).

2. Complete Solutions

By the use of the sequential canonical dual transformation developed in [5], the perfect dual problem (with zero duality gap) $\left(\left(\mathcal{P}^{d}\right)\right.$ in short) of the polynomial optimization (\mathcal{P}) can be formulated as the following

$$
\begin{equation*}
\left(\mathcal{P}^{d}\right): \max _{\varsigma}\left\{P^{d}(\varsigma)=-\frac{|\mathbf{f}|^{2}}{2 \varsigma_{p}!}-\sum_{k=1}^{p} \frac{\varsigma_{p}!}{\varsigma_{k}!} W_{k}^{*}\left(\varsigma_{k}\right)\right\}, \tag{5}
\end{equation*}
$$

where $\varsigma_{p}!=\varsigma_{p} \varsigma_{p-1} \cdots \varsigma_{2} \varsigma_{1}$, and

$$
\begin{equation*}
\varsigma_{1}=\varsigma, \quad \varsigma_{k}=\alpha_{k}\left(\frac{1}{2 \alpha_{k-1}} \varsigma_{k-1}^{2}-\lambda_{k}\right), \quad k=2, \ldots, p . \tag{6}
\end{equation*}
$$

$W_{k}^{*}\left(\zeta_{k}\right)$ is a quadratic function of ς_{k} defined by

$$
W_{k}^{*}\left(\varsigma_{k}\right)=\frac{1}{2 \alpha_{k}} \varsigma_{k}^{2}+\lambda_{k} \zeta_{k} .
$$

The dual problem is a nonlinear programming with only one variable $\varsigma \in \mathbb{R}$, which is much easier than the primal problem. Clearly, for any $\varsigma \neq 0$ and $\varsigma_{k}^{2} \neq 2 \alpha_{k} \lambda_{k+1}$, the dual function P^{d} is well defined and the criticality condition $\delta P^{d}(\varsigma)=0$ leads to a dual algebraic equation

$$
\begin{equation*}
2\left(\varsigma_{p}!\right)^{2}\left(\alpha_{1}^{-1} \varsigma+\lambda_{1}\right)=|\mathbf{f}|^{2} . \tag{7}
\end{equation*}
$$

THEOREM 1 (Complete Solution Set). For any given parameters α_{k}, λ_{k} $(k=1, \ldots, p)$ and the input \mathbf{f}, the dual algebraic Equation (7) has at most $s=2^{p+1}-1$ real solutions: $\bar{\zeta}^{(i)}(i=1, \ldots, s)$. For each dual solution $\bar{\zeta} \in \mathbb{R}$, the vector $\overline{\mathbf{x}}$ defined by

$$
\begin{equation*}
\overline{\mathbf{x}}(\bar{\zeta})=\left(\bar{\zeta}_{p}!\right)^{-1} \mathbf{f} \tag{8}
\end{equation*}
$$

is a critical point of the primal problem (\mathcal{P}) and

$$
P(\overline{\mathbf{x}})=P^{d}(\bar{\zeta})
$$

Conversely, every critical point $\overline{\mathbf{x}}$ of the polynomial $P(\mathbf{x})$ can be written in form (8) for some dual solution $\bar{\zeta} \in \mathbb{R}$.

Proof. We first prove the vector defined by (8) solves (3). Substituting $\left(\bar{\zeta}_{p}!\right)^{-1} \mathbf{f}=\overline{\mathbf{x}}$ into the dual algebraic Equation (7), we obtain

$$
\begin{equation*}
\alpha_{1}\left(\frac{1}{2}|\overline{\mathbf{x}}|^{2}-\lambda_{1}\right)=\alpha_{1}\left(\bar{\xi}_{1}-\lambda_{1}\right)=\bar{\zeta} . \tag{9}
\end{equation*}
$$

Thus from (6) we have

$$
\begin{equation*}
\bar{\zeta}_{k}=\alpha_{k}\left(\bar{\xi}_{k}-\lambda_{k}\right), \quad k=1, \ldots, p \tag{10}
\end{equation*}
$$

Substituting

$$
\overline{\mathbf{x}}(\bar{\zeta})=\left(\bar{\zeta}_{p}!\right)^{-1} \mathbf{f}=\left(\prod_{k=1}^{p} \alpha_{k}\left(\bar{\xi}_{k}-\lambda_{k}\right)\right)^{-1} \mathbf{f}
$$

into the left hand side of the canonical Equation (3) leads to \mathbf{f}. Thus for every solution $\bar{\zeta}$ of the dual algebraic Equation (7), $\overline{\mathbf{x}}=\left(\bar{\zeta}_{p}!\right)^{-1} \mathbf{f}$ solves the canonical Equation (3), and is a critical point of P.

Conversely, if $\overline{\mathbf{x}}$ is a solution of the couple nonlinear system (3), then it can be written in the form $\overline{\mathbf{x}}=\left(\bar{\zeta}_{p}!\right)^{-1} \mathbf{f}$ with $\bar{\zeta}_{k}=\alpha_{k}\left(\bar{\xi}_{k}-\lambda_{k}\right), k=1, \ldots, p$ and $\bar{\xi}_{1}=\frac{1}{2}|\overline{\mathbf{x}}|^{2}$. Thus in terms of $\bar{\zeta}_{k}$, we have

$$
\bar{\xi}_{1}=\frac{1}{2}|\overline{\mathbf{x}}|^{2}=\frac{1}{2}\left(\bar{\zeta}_{p}!\right)^{-2}|\mathbf{f}|^{2}=\frac{1}{\alpha_{1}} \bar{\zeta}_{1}+\lambda_{1}
$$

This is the dual algebraic Equation (7), in which $\bar{\zeta}_{k}=\alpha_{k}\left(\bar{\xi}_{k}-\lambda_{k}\right)$. Since

$$
\bar{\xi}_{k+1}=\frac{1}{2} \alpha_{k}\left(\bar{\xi}_{k}-\lambda_{k}\right)^{2}=\frac{1}{2 \alpha_{k}} \bar{\varsigma}_{k}^{2}=\frac{1}{\alpha_{k+1}} \bar{\zeta}_{k+1}+\lambda_{k+1}
$$

we have

$$
\bar{\zeta}_{k+1}=\alpha_{k+1}\left(\frac{1}{2 \alpha_{k}} \bar{\zeta}_{k}^{2}-\lambda_{k+1}\right) .
$$

This shows that every solution of the coupled nonlinear system (3) can be written in the form $\overline{\mathbf{x}}=\left(\bar{\zeta}_{p}!\right)^{-1} \mathbf{f}$ for some solution $\bar{\zeta}$ of the dual algebraic Equation (7).

3. Global and Local Optimality Criteria

This section will provide some sufficient conditions for global and local extrema.

3.1. triality theory for case $p=1$

The primal problem (\mathcal{P}) for $p=1$ is to find all critical points of the nonconvex function

$$
P(\mathbf{x})=\frac{1}{2} \alpha_{1}\left(\frac{1}{2}|\mathbf{x}|^{2}-\lambda_{1}\right)^{2}-\mathbf{x}^{T} \mathbf{f} .
$$

The canonical dual function for this simple case is

$$
P^{d}(\varsigma)=-\frac{|\mathbf{f}|^{2}}{2 \varsigma}-\frac{1}{2} \alpha_{1}^{-1} \varsigma^{2}-\varsigma \lambda_{1} .
$$

The dual algebraic equation

$$
\begin{equation*}
2 \varsigma^{2}\left(\alpha_{1}^{-1} \varsigma+\lambda_{1}\right)=|\mathbf{f}|^{2} \tag{11}
\end{equation*}
$$

has at most three real roots $\bar{\zeta}^{(i)}(i=1,2,3)$, and the vector $\overline{\mathbf{x}}_{i}=\mathbf{f} / \bar{\zeta}^{(i)}$ is a critical point of the nonconvex function $P(\mathbf{x})$. Let $\phi_{1}(\varsigma)= \pm \varsigma \sqrt{2\left(\alpha_{1}^{-1} \varsigma+\lambda_{1}\right)}$. In algebraic geometry, the graph of $\phi_{1}(\varsigma)$ is the so-called singular algebraic curve in ($\varsigma,|\mathbf{f}|$)-space (see Figure 2).

The following theorem reveals the extremality of these critical points.
THEOREM 2 (Triality theorem [5]). Let $\lambda_{1}, \alpha_{1}>0$ be two given parameters. If $|\mathbf{f}|<h=\sqrt{8 \alpha_{1}^{2} \lambda_{1}^{3} / 27}$, the dual algebraic Equation (11) has three real roots satisfying $\bar{\zeta}^{(1)}>0>\bar{\zeta}^{(2)} \geqslant \bar{\zeta}^{(3)}$, and the vector $\overline{\mathbf{x}}_{1}=\mathbf{f} / \bar{\zeta}^{(1)}$ is a global minimizer, $\overline{\mathbf{x}}_{2}=\mathbf{f} / \bar{\varsigma}^{(2)}$ is a local minimizer, while $\overline{\mathbf{x}}_{3}=\mathbf{f} / \bar{\varsigma}^{(3)}$ is a local maximizer. If $|\mathbf{f}|<h$, the dual algebraic Equation (11) has a unique root $\bar{\zeta}^{(1)}>0$, and the vector $\overline{\mathbf{x}}_{1}$ is a global minimizer of the function $P(\mathbf{x})$. However, if $|\mathbf{f}|=h$, the dual algebraic Equation (11) has only two roots $\bar{\zeta}^{(1)}>0>\bar{\zeta}^{(2)}$, the vector $\overline{\mathbf{x}}_{1}=\mathbf{f} / \bar{\zeta}^{(1)}$ is a global minimizer of the function $P(\mathbf{x})$, while the vector $\overline{\mathbf{x}}_{2}=\mathbf{f} / \bar{\varsigma}^{(2)}$ is a local stationary point.

REMARK. For $p=1$, the nonconvex function $W(\mathbf{x})$ is a double-well function of $|\mathbf{x}|$. By using the method introduced by Gao and Strang [12], we let $\xi_{1}=\Lambda_{1}(\mathbf{x})=\frac{1}{2}|\mathbf{x}|^{2}$, then $W(\mathbf{x})$ can be written as $W(\mathbf{x})=W_{1}\left(\Lambda_{1}(\mathbf{x})\right)$, where $W_{1}\left(\xi_{1}\right)=\frac{1}{2} \alpha_{1}\left(\xi_{1}-\lambda_{1}\right)^{2}$ is the canonical function of ξ_{1} (see [5]). Its conjugate function can be easily obtained by the Legendre transformation

$$
W_{1}^{*}(\varsigma)=\left\{\xi_{1} \varsigma-W_{1}\left(\xi_{1}\right) \mid \varsigma=\partial W_{1}\left(\xi_{1}\right) / \partial \xi_{1}=\alpha_{1}\left(\xi_{1}-\lambda_{1}\right)\right\}=\frac{1}{2} \alpha_{1}^{-1} \varsigma^{2}+\lambda_{1} \varsigma .
$$

Thus, replacing $W(\mathbf{x})$ by $W_{1}\left(\Lambda_{1}(\mathbf{x})\right)=\Lambda_{1}(\mathbf{x}) \varsigma-W_{1}^{*}(\varsigma)$, the nonconvex function $P(\mathbf{x})$ can be written in the following so-called extended Lagrange form:

$$
\begin{equation*}
L(\mathbf{x}, \varsigma)=\frac{1}{2}|\mathbf{x}|^{2} \varsigma-\frac{1}{2} \alpha_{1}^{-1} \varsigma^{2}-\varsigma \lambda_{1}-\mathbf{x}^{T} \mathbf{f} \tag{12}
\end{equation*}
$$

which is actually the generalized complementary energy studied by Gao and Strang in nonconvex/nonsmooth variational problem [12], and the term $G(\mathbf{x}, \varsigma)=\frac{1}{2}|\mathbf{x}|^{2} \varsigma$ is the complementary gap function. Gao and Strang proved that if $G(\mathbf{x}, \varsigma) \geqslant 0$, i.e. $\varsigma \geqslant 0$ in this finite dimensional case, $L(\mathbf{x}, \varsigma)$ is a saddle function and

$$
\min _{\mathbf{x} \in \mathbf{R}^{n}} \max _{\varsigma \geqslant 0} L(\mathbf{x}, \varsigma)=\max _{\varsigma \geqslant 0} \min _{\mathbf{x} \in \mathbb{R}^{n}} L(\mathbf{x}, \varsigma) .
$$

It is easy to check that $P(\mathbf{x})=\max _{\varsigma \geqslant 0} L(\mathbf{x}, \varsigma)$, and $P^{d}(\varsigma)=\min _{\mathbf{x} \in \mathrm{R}^{n}} L(\mathbf{x}, \varsigma)$ if $\varsigma \neq 0$. Thus the condition $G(\mathbf{x}, \varsigma) \geqslant 0, \forall \mathbf{x} \in \mathbb{R}^{n}$ serves as a sufficient condition for global minimizer, and

$$
\begin{equation*}
\min _{\mathbf{x} \in \mathbb{R}^{n}} P(\mathbf{x})=\min _{\mathbf{x} \in \mathrm{R}^{n}} \max _{\varsigma>0} L(\mathbf{x}, \varsigma)=\max _{\varsigma>0} P^{d}(\varsigma) . \tag{13}
\end{equation*}
$$

Furthermore, in the study of post-buckling analysis of large deformed beam theory (see [2]), the author discovered that if $G(\mathbf{x}, \varsigma) \leqslant 0$, then $L(\mathbf{x}, \varsigma)$ is a so-called super-Lagrangian. If $(\overline{\mathbf{x}}, \bar{\varsigma})$ is a critical point of $L(\mathbf{x}, \varsigma)$, and $\bar{\varsigma}<0$, then in the neighborhood of ($\overline{\mathbf{x}}, \bar{\zeta}$), we have either

$$
\begin{equation*}
P(\overline{\mathbf{x}})=\min _{\mathbf{x} \in \mathbb{R}^{n}} \max _{\varsigma<0} L(\mathbf{x}, \varsigma)=\min _{\varsigma<0} \max _{\mathbf{x} \in \mathbb{R}^{n}} L(\mathbf{x}, \varsigma)=P^{d}(\bar{\varsigma}), \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
P(\overline{\mathbf{x}})=\max _{\mathbf{x} \in \mathrm{R}^{n}} \max _{\varsigma<0} L(\mathbf{x}, \varsigma)=\max _{\varsigma<0} \max _{\mathbf{x} \in \mathrm{R}^{n}} L(\mathbf{x}, \varsigma)=P^{d}(\bar{\varsigma}) \tag{15}
\end{equation*}
$$

This set of three relations (13-15) forms a so-called tri-duality theory in nonconvex analysis [4,5], which was discovered first in post-buckling analysis of a large deformed beam theory [2]. The graphs of $P(x)$ and $P^{d}(\varsigma)$ for $n=1$ are illustrated by Figure 1, where we can see that $P^{d}(\varsigma)$ is strictly concave for $\varsigma>0$, while for $\varsigma<0, P^{d}(\varsigma)$ is nonconvex with one local minimizer and a local maximizer.

3.2. global minimizer for general case

For general case $p \geqslant 1$, the global minimizer of the problem (\mathcal{P}) can be identified by the following theorem.

Figure 1. Triality theory: graphs of $P(x)$ (dashed) and $P^{d}(\varsigma)$ (solid) for $n=1$.

THEOREM 3. Suppose that for the given positive parameters $\alpha_{k}, \lambda_{k} \geqslant 0 \forall k \in$ $\{1, \ldots, p\}, \bar{\zeta}$ is a solution of the dual algebraic Equation (7). If

$$
\bar{\zeta}>\varsigma_{+}=\sqrt{2 \alpha_{1}\left(\lambda_{2}+\sqrt{\frac{2}{\alpha_{2}}\left(\lambda_{3}+\cdots+\sqrt{\frac{2}{\alpha_{p-2}}\left(\lambda_{p-1}+\sqrt{\frac{2}{\alpha_{p-1}} \lambda_{p}}\right)}\right)}\right.}
$$

then $\bar{\zeta}$ is a global maximizer on the open domain $\left(\varsigma_{+},+\infty\right), \overline{\mathbf{x}}=\left(\bar{\varsigma}_{p}!\right)^{-1} \mathbf{f}$ is a global minimizer of P, and

$$
\begin{equation*}
P(\overline{\mathbf{x}})=\min _{\mathbf{x} \in \mathrm{R}^{n}} P(\mathbf{x})=\max _{\varsigma>\varsigma_{+}} P^{d}(\varsigma)=P^{d}(\bar{\varsigma}) \tag{16}
\end{equation*}
$$

Proof. By using the sequential canonical dual transformation (see [5]), the complementary function associated with the problem (\mathcal{P}) is

$$
\begin{equation*}
L(\mathbf{x}, \boldsymbol{\varsigma})=\frac{1}{2}|\mathbf{x}|^{2} \varsigma_{p}!-\sum_{k=1}^{p} \frac{\varsigma_{p}!}{\varsigma_{k}!} W_{k}^{*}\left(\varsigma_{k}\right)-\mathbf{x}^{T} \mathbf{f} \tag{17}
\end{equation*}
$$

where $\boldsymbol{\varsigma}=\left\{\varsigma_{1}, \ldots, \varsigma_{p}\right\} \in \mathbb{R}^{p}$. It is easy to see that if $\boldsymbol{\varsigma}>0$, i.e. $\varsigma_{k}>0 \forall k \in$ $\{1, \ldots, p\}$, the Lagrangian L is convex in $\mathbf{x} \in \mathbb{R}^{n}$ and concave in each $\varsigma_{k}(k=1, \ldots, p)$. Thus, by the saddle-point theory (see [5]), we have

$$
\min _{\mathbf{x} \in \mathrm{R}^{n}} P(\mathbf{x})=\min _{\mathbf{x} \in \mathrm{R}^{n}} \max _{\varsigma>0} L(\mathbf{x}, \boldsymbol{\varsigma})=\max _{\boldsymbol{\varsigma}>0} \min _{\mathbf{x} \in \mathrm{R}^{n}} L(\mathbf{x}, \boldsymbol{\varsigma})=\max _{\boldsymbol{\varsigma}>0} P_{p}^{d}(\boldsymbol{\varsigma})
$$

where

$$
P_{p}^{d}(\varsigma)=-\frac{|\mathbf{f}|^{2}}{2 \varsigma_{p}!}-\sum_{k=1}^{p} \frac{\varsigma_{p}!}{\varsigma_{k}!} W_{k}^{*}\left(\varsigma_{k}\right)
$$

is concave for each $\varsigma_{k}>0(k=1,2, \ldots, p)$. The criticality condition $\delta_{\varsigma_{k}} P_{p}^{d}(\varsigma)=0$ leads to Equation (6). Thus, under the condition $\varsigma>\varsigma_{+}$,

$$
\min _{\mathbf{x} \in \mathrm{R}^{n}} P(\mathbf{x})=\max _{\varsigma>0} P_{p}^{d}(\varsigma)=\max _{\varsigma>\varsigma+} P^{d}(\varsigma) .
$$

This proves (16).

4. Applications

In this section, we present applications of the general theory obtained in this paper to the following cases.

4.1. CASE $p=1$

We simply let $\alpha_{1}=3, \lambda_{1}=3 / 2$, which gives $h=3.0$. If we choose $\mathbf{f}=$ $\{5,-3\} / \sqrt{2}$, then $|\mathbf{f}|<h$ and the dual algebraic Equation (11) has only one real root $\varsigma_{1}=1.93>0$. By Theorem 2 we know that $\mathbf{x}_{1}=\mathbf{f} / \varsigma_{1}=$ $\{1.46421,-1.46421\}$ is a global minimizer and $P\left(\mathbf{x}_{1}\right)=-7.66=P^{d}\left(\varsigma_{1}\right)$ (Figure 2).

For $\mathbf{f}=\{3,-3\} / \sqrt{2}$, we have $|\mathbf{f}|=h$ and the dual algebraic Equation (11) has two real roots $\varsigma_{1}=1.5>0>\varsigma_{2}=-3=\varsigma_{3}$. By Theorem 2 we know that $\mathbf{x}_{1}=\mathbf{f} / \varsigma_{1}=\{1.41421,-1.41421\}$ is a global minimizer, $\mathbf{x}_{2}=\mathbf{f} / \varsigma_{2}=$ $\{-0.707107,0.707107\}$ is a local stationary point. It is easy to verify that

$$
P\left(\mathbf{x}_{1}\right)=P^{d}\left(\varsigma_{1}\right)=-5.63<P\left(\mathbf{x}_{2}\right)=P^{d}\left(\varsigma_{2}\right)=4.5 .
$$

If we choose $\mathbf{f}=\{1,-2\} / \sqrt{2}$, then $|\mathbf{f}|<h$ and the dual algebraic Equation (11) has three real roots $\varsigma_{1}=0.838147>0>\varsigma_{2}=-1.04125>\varsigma_{3}=-4.29689$. By Theorem 2 we know that $\mathbf{x}_{1}=\mathbf{f} / \varsigma_{1}=\{0.843655,-1.68731\}$ is a global minimizer, $\mathbf{x}_{2}=\mathbf{f} / \varsigma_{2}=\{-0.679092,1.35818\}$ is a local minimizer, and $\mathbf{x}_{3}=$ $\mathbf{f} / \varsigma_{3}=\{-0.164562,0.329125\}$ is local maximizer. It is easy to verify that
$P\left(\mathbf{x}_{1}\right)=P^{d}\left(\varsigma_{1}\right)=-2.87<P\left(\mathbf{x}_{2}\right)=P^{d}\left(\varsigma_{2}\right)=2.58<P\left(\mathbf{x}_{3}\right)=P^{d}\left(\varsigma_{3}\right)=3.66$. (see Figure 3).

4.2. CASE $p=2$

In this case, the dual function has the form

$$
\begin{equation*}
P^{d}(\varsigma)=-\frac{|\mathbf{f}|^{2}}{2 \varsigma \varsigma_{2}}-\left(\frac{1}{\alpha_{2}} \varsigma_{2}^{2}+\lambda_{2} \varsigma_{2}+\varsigma_{2}\left(\frac{1}{2 \alpha_{1}} \varsigma^{2}+\lambda_{1} \varsigma\right)\right) . \tag{18}
\end{equation*}
$$

(a)

(b)

(c)

Figure 2. Algebraic curves $|\mathbf{f}|=\phi_{1}(\varsigma)$ (left) and graphs of dual function P^{d} (right). (a) $|\mathbf{f}|>h$: Unique solution. (b) $|\mathbf{f}|=h$: two solutions. (c) $|\mathbf{f}|<h$: three solutions.

Figure 3. Graph of $P(\mathbf{x})$ with three critical points: global minimizer $\mathbf{x}_{1}=\{0.84,-1.69\}$, local minimizer $\mathbf{x}_{2}=\{-0.68,1.36\}$, and local maximizer $\mathbf{x}_{3}=\{-0.16,0.33\}$.

Substituting $\varsigma_{2}=\frac{\alpha_{2}}{2 \alpha_{1}} \varsigma^{2}-\lambda_{2} \alpha_{2}$ into (7), the dual algebraic equation

$$
\begin{equation*}
2 \varsigma^{2}\left(\frac{\alpha_{2}}{2 \alpha_{1}} \varsigma^{2}-\lambda_{2} \alpha_{2}\right)^{2}\left(\frac{1}{\alpha_{1}} \varsigma+\lambda_{1}\right)=|\mathbf{f}|^{2} \tag{19}
\end{equation*}
$$

has at most seven real roots $\overline{\zeta_{i}}(i=1, \ldots, 7)$. Let

$$
\phi_{2}(\varsigma)= \pm \varsigma\left(\frac{\alpha_{2}}{2 \alpha_{1}} \varsigma^{2}-\lambda_{2} \alpha_{2}\right) \sqrt{2\left(\frac{1}{\alpha_{1}} \varsigma+\lambda_{1}\right)},
$$

and $\mathbf{f}=\{0.5,-0.2\}, \alpha_{1}=2, \alpha_{2}=1$, and $\lambda_{2}=1$. Then for different values of λ_{1} the graphs of $\phi_{2}(\varsigma)$ and $P^{d}(\varsigma)$ are shown in Figure 4. The graphs of $P(\mathbf{x})$ are shown in Figure 5 (for $\lambda_{1}=0$ and $\lambda_{1}=1$) and Figure 6 (for $\lambda_{1}=2$). Since $\varsigma_{+}=\sqrt{2 \alpha_{1} \lambda_{2}}=2$, we can see that the dual function $P^{d}(\varsigma)$ is strictly concave for $\varsigma>\varsigma_{+}=2$. The dual algebraic Equation (19) has a total of seven real solutions when $\lambda_{1}=2$, and the biggest $\varsigma_{1}=2.10>\varsigma_{+}=2$ gives the global minimizer $\mathbf{x}_{1}=\mathbf{f} / \varsigma_{1}=\{2.29,-0.92\}$, and $P\left(\mathbf{x}_{1}\right)=-1.32=$ $P^{d}\left(\varsigma_{1}\right)$. The smallest $\varsigma_{7}=-4.0$ gives a local maximizer $\mathbf{x}_{7}=\{-0.04,0.02\}$ and $P\left(\mathbf{x}_{7}\right)=4.51=P^{d}\left(\varsigma_{7}\right)$ (see Figure 6).
(a)

(b)

(c)

Figure 4. Graphes of the algebraic curve $\phi_{2}(\varsigma)$ (left) and dual function $P^{d}(\varsigma)$ (right) (a) $\lambda_{1}=0$: Three solutions $\varsigma_{3}=0.73<\varsigma_{2}=1.75<\varsigma_{1}=2.16$. (b) $\lambda_{1}=1$: Five solutions $\{-1.42,-0.46,0.36,1.85,2.12\}$. (c) $\lambda_{1}=2$: Seven solutions $\{-4.0,-2.18,-1.79,-0.29,0.27,1.88,2.10\}$.

$$
\psi_{1}=0
$$

$\psi_{1}=1$.

Figure 5. Graphs of $P(\mathbf{x})$. (a) $\lambda_{1}=0$. (b) $\lambda_{1}=1$.

Figure 6. Graph of $P(\mathbf{x})$ with $\lambda_{1}=2$.

4.3. CASE $p=3$

For $p=3$, the nonconvex function

$$
P(\mathbf{x})=\frac{1}{2} \alpha_{3}\left(\frac{1}{2} \alpha_{2}\left(\frac{1}{2} \alpha_{1}\left(\frac{1}{2}|\mathbf{x}|^{2}-\lambda_{1}\right)^{2}-\lambda_{2}\right)^{2}-\lambda_{3}\right)^{2}-\mathbf{x}^{T} \mathbf{f}
$$

is a polynomial of degree $d=2^{3+1}=16$. The dual function has the form

$$
\begin{equation*}
P^{d}(\varsigma)=-\frac{|\mathbf{f}|^{2}}{2 \varsigma \varsigma_{2} \varsigma_{3}}-\left(\frac{1}{\alpha_{3}} \varsigma_{3}^{2}+\lambda_{3} \varsigma_{3}+\varsigma_{3}\left(\frac{1}{\alpha_{2}} \varsigma_{2}^{2}+\lambda_{2} \varsigma_{2}\right)+\varsigma_{3} \varsigma_{2}\left(\frac{1}{2 \alpha_{1}} \varsigma^{2}+\lambda_{1} \varsigma\right)\right), \tag{20}
\end{equation*}
$$

Figure 7. Graph of $\phi_{3}(\varsigma)$.
where $\varsigma_{2}=\frac{\alpha_{2}}{2 \alpha_{1}} \varsigma^{2}-\lambda_{2} \alpha_{2}, \quad \zeta_{3}=\frac{\alpha_{3}}{2 \alpha_{2}} \varsigma_{2}^{2}-\lambda_{3} \alpha_{3}$. The criticality condition $\delta P^{d}(\varsigma)=0$ leads to the dual algebraic equation

$$
\begin{equation*}
\phi_{3}^{2}(\varsigma)=|\mathbf{f}|^{2} \tag{21}
\end{equation*}
$$

where
$\phi_{3}(\varsigma)= \pm \varsigma\left(\frac{\alpha_{2}}{2 \alpha_{1}} \varsigma^{2}-\lambda_{2} \alpha_{2}\right)\left(\frac{\alpha_{3}}{2 \alpha_{2}}\left(\frac{\alpha_{2}}{2 \alpha_{1}} \varsigma^{2}-\lambda_{2} \alpha_{2}\right)^{2}-\lambda_{3} \alpha_{3}\right) \sqrt{2\left(\frac{1}{\alpha_{1}} \varsigma+\lambda_{1}\right)}$.

If we choose $\alpha_{1}=3, \alpha_{2}=1, \alpha_{3}=2$ and $\lambda_{1}=2, \lambda_{2}=3, \lambda_{3}=2$, the graph of $\phi_{3}(\varsigma)$ is shown in Figure 7. In this case,

$$
\varsigma_{+}=\sqrt{2 \alpha_{1}\left(\lambda_{2}+\sqrt{\frac{2}{\alpha_{2}} \lambda_{3}}\right)}=5.48
$$

Particularly, if we let $\mathbf{f}=\{1,-1\}$, the dual problem has a unique solution $\varsigma_{1}=5.48355$ on the domain $\left(\varsigma_{+}, \infty\right)$, which leads to a global minimizer $\mathbf{x}_{1}=\{1.95649,-1.95649\}$, and we have $P\left(\mathbf{x}_{1}\right)=-3.912=P^{d}\left(\varsigma_{1}\right)$.

Acknowledgement

This work was supported by National Science Foundation Grant (CCF0514768). Comments from Professor Panos Pardalos and his student O. Prokopyev at the University of Florida are acknowledged.

References

1. Demmel, J.W., Nie, J. and Sturmfels, B. (2005), Minimizing polynomials via sum of squares over the gradient ideal. Preprint.
2. Gao, D.Y. (1997), Dual extremum principles in finite deformation theory with applications in post-buckling analysis of nonlinear beam model, Applied Mechanics Reviews, ASME 50(11), November, S64-S71.
3. Gao, D.Y. (1998), Duality, triality and complementary extremum principles in nonconvex parametric variational problems with applications, IMA Journal of Applied Mathematics 61, 199-235.
4. Gao, D.Y. (1999), Duality-mathematics, Wiley Encyclopedia of Electronical and Electronical Engineering 6, 68-77.
5. Gao, D.Y. (2000), Duality Principles in Nonconvex Systems: Theory, Methods and Applications, Kluwer Academic Publishers, Dordrecht/Boston/London, xviii +454 pp.
6. Gao, D.Y. (2000), Analytic solution and triality theory for nonconvex and nonsmooth variational problems with applications, Nonlinear Analysis 42(7), 1161-1193.
7. Gao, D.Y. (2000), Finite deformation beam models and triality theory in dynamical post-buckling analysis, International Journal Non-Linear Mechanics 35, 103-131.
8. Gao, D.Y. (2000), Canonical dual transformation method and generalized triality theory in nonsmooth global optimization, Journal of Global Optimization 17(1/4), pp. 127-160.
9. Gao, D.Y. (2001), Tri-duality in global optimization, In: Floudas, C.A. and Pardalos, P.D. (eds.), Encyclopedia of Optimization Vol. 1, Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 485-491.
10. Gao, D.Y. (2003), Perfect duality theory and complete set of, solutions to a class of global optimization, Optimization 52(4-5), 467-493.
11. Gao, D.Y. (2004), Complete solutions to constrained quadratic optimization problems, Journal of Global Optimisation, special issue on Duality, edited by D.Y. Gao and K.L. Teo. 29, 377-399.
12. Gao, D.Y. and Strang, G. (1989), Geometric nonlinearity: potential energy, complementary energy, and the gap function, Quarterly of Applied Mathmatics 47(3), 487-504.
13. Horst, R., Pardalos, P.M. and Van Thoai, N. (2000), Introduction to Global Optimization, Kluwer Academic Publishers.
14. Nesterov, Y. (2000), Squared functional systems and optimization problems, In: Frenk, H. et al. (eds.) High Performance Optimization, Kluwer Academic Publishers, pp. 405-440.
15. Lasserre, J. (2001), Global optimization with polynomials and the problem of moments. SIAM Journal of Optimization 11(3), 796-817.
16. Parrilo, P. and Sturmfels, B. (2001), Minimizing polynomial functions, In: Basu, S. and Gonzalez-Vega, L. (eds.), Proceedings of DIMACS Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, American Mathematical Society, 2003, pp. 83-100.
